What do investors believe?

Is climate risk priced?

Where do we go from here

Conclusion 00

Climate Change and Asset Prices - A Review of the Literature

Olin Business School Wealth & Asset Management Research Conference

Marcus Painter

Saint Louis University

August 23, 2019

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion 00

THE WALL STREET JOURNAL.

PG&E: The First Climate-Change Bankruptcy, Probably Not the Last

The fast fall of PG&E after California's wildfires is a jolt for companies considering the uncertain risks of a warming planet

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Credit rating agencies are concerned about climate risk

Bloomberg	Markets	Tech	Pursuits	Politics	Opinion	Businessweek	
Mood	dv's	Wa	arns	: Cit	ies	to Address	
Clima	ate F	Ris	kso	or Fa	ace	Downgrade	S
By Christopher Flav	velle						

November 29, 2017, 4:00 AM EST

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion 00

Source: Wall Street Journal. Oct. 31 2018

Is climate risk priced?

Where do we go from here?

Conclusion 00

Despite the past few slides, this is not a doomsday talk

Though the overwhelming majority of climatologists believe climate change is happening and presents a great risk to society, it is still just that, a risk.

- Financial economists deal with risk all the time!
- Markets are a powerful tool for understanding and combating this risk, and a burgeoning academic literature has emerged as a result

What do investors believe?

Is climate risk priced?

Where do we go from here

Conclusion 00

What do investors believe?

Is climate risk priced?

Where do we go from here?

Conclusion

What do investors believe?

Is climate risk priced?

Where do we go from here?

Conclusion 00

Google Search Volume for "Sea Level Rise" (Bernstein, Gustafson, and Lewis, 2019) The vertical line indicates the release window for parts 2 and 3 of the 2013 IPCC report on climate change.

What do investors believe?

Is climate risk priced?

The Importance of Climate Risks for Institutional Investors

Krueger, Sautner, and Starks, 2019 (Note - red text indicates a hyperlink)

- Survey institutional investors regarding climate-risk perceptions
- 439 survey respondents

Respondent position (N=428)	Percentage
Fund/Portfolio manager	21%
Executive/Managing director	18%
Investment analyst/strategist	16%
CIO	11%
CEO	10%
CFO/COO/Chairman/Other executive	10%
ESG/RI specialist	10%
Other	2%
Institutional investor type (N=439)	Percentage
Asset manager	23%
Bank	22%
Pension fund	17%
Insurance company	15%
Mutual fund	8%
Other institution	15%
Assets under management (N=430)	Percentage
Less than \$1bn	19%
Between \$1bn and \$20bn	32%
Between \$20bn and \$50bn	23%
Between \$50bn and \$100bn	16%
More than \$100bn	11%

Surveyed investors seem to care (a little bit) about climate change

Panel A: Ranking of importance of investment risks (N=406)							
Financial Operating Governance Climate Other enviro							
	risk	risk	risk	Social risk	risk	risk	
Percentage Top Risk	51%	15%	12%	11%	10%	4%	
Mean Ranking	Mean Ranking 2.2 2.9 3.3 3.7 4.0 4.6						

Panel B: Financial materiality and materialization of						
	climate risks					
Regulatory Physical						
	climate	climate	Technological			
Financial	risk	risk	climate risk			
materiality	(N=393)	(N=393)	(N=393)			
Mean Ranking	2.2	2.5	2.2			

Investors ranked each risk on a scale of 1 (biggest risk) to 6 (smallest risk)

What do investors believe?

Is climate risk priced?

Where do we go from here?

Conclusion 00

How do funds manage climate risk?

		Percentage that took	
		this measure	N
Climate-risk	-management approaches taken in the past five years	(1)	(2)
(1)	Analyzing carbon footprint of portfolio firms	38.0%	410
(2)	Analyzing stranded asset risk	34.6%	410
(3)	General portfolio diversification	33.9%	410
(4)	ESG integration	31.7%	410
(5)	Reducing carbon footprint of portfolio firms	29.3%	410
(6)	Firm valuation models that incorporate climate risk	25.9%	410
(7)	Use of third-party ESG ratings	25.6%	410
(8)	Shareholder proposals	25.1%	410
(9)	Hedging against climate risk	24.6%	410
(10)	Negative/exclusionary screening	23.7%	410
(11)	Reducing stranded asset risk	22.9%	410
(12)	Divestment	20.2%	410
(13)	None	7.1%	410
(14)	Other	3.7%	410

What do investors believe?

Is climate risk priced?

Where do we go from here

Conclusion 00

How do investors vote?

Climate change has been a top ESG shareholder proposal in recent years, but few proposals win

Source: ISS U.S. 2017: Proxy Season Review - Environmental & Social Issues

What do investors believe?

Is climate risk priced?

Where do we go from here 0000000000

Conclusion 00

"The sponsor [of the proxy] may worry that property losses will skyrocket because of weather changes. And such worries might, in fact, be warranted if we wrote ten- or twenty-year policies at fixed prices. But insurance policies are customarily written for one year and repriced annually to reflect changing exposures. Increased possibilities of loss translate promptly into increased premiums."

- Berkshire Hathaway Annual Letter, 2015

Distribution of fund votes and ISS recommendations on ES proposals over time

- He, Kahraman, and Lowry, 2019

Failed ES proposals with higher investor support predict downside tail risk and increased likelihood of negative ES incidents.

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion 00

Roadmap

What do investors believe?

Is climate risk priced?

Where do we go from here?

Conclusion

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion 00

Is climate risk priced?

It depends!

- Type of climate risk
 - Physical (sea level rise, drought, wildfire, etc.)
 - Regulatory
 - Timing (short-term vs. long-term)
- Asset class
- Investor attention
- Investor beliefs

Open question as to what correct price is

Is climate risk priced?

Where do we go from here

Conclusion

Does the municipal bond market price climate risk? (Painter, 2019)

The municipal bond market provides a useful setting to study this question

- Immobile
- Heterogeneity in term structure
- Heterogeneity in exposure to climate change
 - Sea level rise
 - Hallegatte et al. (2013) climate risk measure

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Counties with High Climate Risk

City	County	Mean Annual Loss (MM\$)	Climate Risk
New Orleans, LA	Orleans	1940	1.479%
Miami, FL	Miami Dade	2964	0.420%
Tampa/St. Petersburg, FL	Hillsborough, Pinellas	948	0.324%
Virginia Beach, VA	Virginia Beach	328	0.173%
Boston, MA	Suffolk	849	0.149%
Baltimore, MD	Baltimore	299	0.104%
LA/Long Beach/Santa Ana, CA	Los Angeles, Orange	217	0.097%
New York, NY/ Newark, NJ	Bronx, Kings, New York, Queens, Richmond, Essex	2159	0.089%
Providence, RI	Providence	135	0.083%
Philadelphia, PA	Philadelphia	309	0.044%
San Francisco/Oakland, CA	San Francisco, Alameda	185	0.042%
Houston, TX	Walker, Montgomery, Liberty, Waller, Austin,	214	0.038%
	Harris, Chambers, Colorado, Wharton, Fort Bend,		
	Galveston, Brazoria, Matagorda		
Seattle, WA	King	90	0.023%
Washington D.C.	Washington	91	0.016%
San Diego, CA	San Diego	14	0.004%
Portland, OR	Multnomah	4	0.002%
San Jose, CA	Santa Clara	2	0.001%

Is climate risk priced?

Long-term issuance costs are higher in counties with higher climate risk

 $Y = \beta_1 * Ln(Climate Risk) + \beta_2 * Bond Controls + \beta_4 * State \times Year FE + \epsilon$ (1)

 ${\sf Dependent} \ {\sf Variable} = {\sf Yield} + {\sf Annualized} \ {\sf Gross} \ {\sf Spread}$

	Long-Term Issuances	Short-Term Issuances
Ln(Climate Risk)	0.339** (2.085)	0.093 (1.117)
Controls State-Year FE	Yes Yes	Yes Yes

An increase of 33.9 bps represents a 7.3% increase from the mean issuance cost For the average bond, a 1% increase in Climate Risk is associated with a rise in total annualized issuance costs of \$82,682. The average county issues 26 long-term bonds in the sample, bringing the total burden to \$2.15 million per year.

Is climate risk priced?

Long-term issuance costs are higher in counties with higher climate risk

 $Y = \beta_1 * Ln(Climate Risk) + \beta_2 * Bond Controls + \beta_4 * State \times Year FE + \epsilon$ (1)

 ${\sf Dependent} \ {\sf Variable} = {\sf Yield} + {\sf Annualized} \ {\sf Gross} \ {\sf Spread}$

	Long-Term Issuances	Short-Term Issuances
Ln(Climate Risk)	0.339** (2.085)	0.093 (1.117)
Controls State-Year FE	Yes Yes	Yes Yes

An increase of 33.9 bps represents a 7.3% increase from the mean issuance cost For the average bond, a 1% increase in Climate Risk is associated with a rise in total annualized issuance costs of \$82,682. The average county issues 26 long-term bonds in the sample, bringing the total burden to \$2.15 million per year.

Is climate risk priced?

Long-term issuance costs are higher in counties with higher climate risk

 $Y = \beta_1 * Ln(Climate Risk) + \beta_2 * Bond Controls + \beta_4 * State \times Year FE + \epsilon$ (1)

 ${\sf Dependent} \ {\sf Variable} = {\sf Yield} + {\sf Annualized} \ {\sf Gross} \ {\sf Spread}$

	Long-Term Issuances	Short-Term Issuances
Ln(Climate Risk)	0.339** (2.085)	0.093 (1.117)
Controls State-Year FE	Yes Yes	Yes Yes

An increase of 33.9 bps represents a 7.3% increase from the mean issuance cost

For the average bond, a 1% increase in Climate Risk is associated with a rise in total annualized issuance costs of \$82,682. The average county issues 26 long-term bonds in the sample, bringing the total burden to \$2.15 million per year.

Is climate risk priced?

Long-term issuance costs are higher in counties with higher climate risk

 $Y = \beta_1 * Ln(Climate Risk) + \beta_2 * Bond Controls + \beta_4 * State \times Year FE + \epsilon$ (1)

Dependent Variable = Yield + Annualized Gross Spread

	Long-Term Issuances	Short-Term Issuances
Ln(Climate Risk)	0.339** (2.085)	0.093 (1.117)
Controls State-Year FE	Yes Yes	Yes Yes

An increase of 33.9 bps represents a 7.3% increase from the mean issuance cost For the average bond, a 1% increase in Climate Risk is associated with a rise in total annualized issuance costs of \$82,682. The average county issues 26 long-term bonds in the sample, bringing the total burden to \$2.15 million per year.

Is climate risk priced?

Where do we go from here

Conclusion 00

Does investor attention affect whether climate risk is priced?

Attention

- Attention is a significant factor in investing
 - stock price volatility (Andrei and Hasler, 2014)
 - short-term stock returns (Da et al., 2011; Lou, 2014)
 - reactions to earnings announcements (Hirshleifer, Lim, and Teoh, 2011)

The Stern Review (i.e., where it all started)

- October 30, 2006
- Former World Bank Chief Economist
- One of the earliest and most thorough analyses on the economics of climate change
- Release is unlikely to change the risk profile of munis other than through increased awareness of climate change risk

Is climate risk priced?

Where do we go from here

Conclusion 00

Does investor attention affect whether climate risk is priced?

Attention

- Attention is a significant factor in investing
 - stock price volatility (Andrei and Hasler, 2014)
 - short-term stock returns (Da et al., 2011; Lou, 2014)
 - reactions to earnings announcements (Hirshleifer, Lim, and Teoh, 2011)

The Stern Review (i.e., where it all started)

- October 30, 2006
- Former World Bank Chief Economist
- One of the earliest and most thorough analyses on the economics of climate change
- Release is unlikely to change the risk profile of munis other than through increased awareness of climate change risk

Climate change attention increases after the release of the Stern Review

Google Search Volume for "Climate Change" around the Stern Review (Painter, 2019)

What do investors believe

Is climate risk priced?

Where do we go from here

The difference in issuance costs increases after the Stern Review

Is climate risk priced?

Does the residential real estate market price climate risk?

- Murfin and Spiegel (2019) no
 - Measure sea level rise (SLR) risk using a continuous measure based on home's elevation and rates of subsidence/land rebound (Source NOAA)
- Bernstein, Gustafson, and Lewis (2019) yes, for sophisticated investors
 - Calculate SLR risk using dummy variables based on one foot increments (NOAA)
- Baldauf, Garlappi, and Yannelis (2019) yes, if you believe in it
 - Dummy variable indicating if NOAA has designated a home at risk if seas rise six feet or more

Is climate risk priced?

Where do we go from here?

- NOAA Database - NYC, NY. Light blue area indicates areas that will be inundated following a 2 foot increase in SLR

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Murfin and Spiegel (2019) - null result

	Full S	ample	Shoreline	e Sample	Excl. flood zone	2015 - 2017
$\ln(\text{Price})$	(1)	(2)	(3)	(4)	(5)	(6)
ln(Elevation over MHHW)	-0.003	-0.004	0.002	0.002	0.013	-0.004
	(0.003)	(0.008)	(0.005)	(0.013)	(0.010)	(0.009)
$\ln(\text{Elevation over MHHW}) \ge \log RSLR$ trend		0.000		0.000	-0.004	0.001
		(0.003)		(0.005)	(0.003)	(0.003)
Relative local SLR trend	-	-		-	-	-
		o z ookuluk	o mana diskski			
$\ln(\text{sq. feet})$	0.566^{***}	0.566***	0.571***	0.571***	0.548***	0.529^{***}
	(0.006)	(0.006)	(0.009)	(0.009)	(0.006)	(0.008)
$\ln(\text{land sq. ft})$	0.116^{***}	0.116^{***}	0.123^{***}	0.123^{***}	0.121^{***}	0.117^{***}
	(0.003)	(0.003)	(0.005)	(0.005)	(0.003)	(0.003)
$\ln(\text{distance to coast})$	-0.117^{***}	-0.117^{***}	-0.132^{***}	-0.132^{***}	-0.105^{***}	-0.113^{***}
	(0.004)	(0.004)	(0.004)	(0.004)	(0.005)	(0.004)
Beachfront	0.160^{***}	0.160^{***}	0.102^{***}	0.102^{***}	0.299^{***}	0.171^{***}
	(0.017)	(0.017)	(0.016)	(0.016)	(0.020)	(0.017)
	1100	TITIC	TITIC	TIDA	TIDA	
Other Controls: Bed, Bath, Age, Flood Zone, Mobile	YES	YES	YES	YES	YES	YES
Year, Census Tract Fixed Effects	YES	YES	YES	YES	YES	YES
Observations	4,292,176	4,292,176	813,794	813,794	3,858,372	2,096,230
R-squared	0.564	0.564	0.605	0.605	0.583	0.608

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion 00

- Bernstein, Gustafson, and Lewis (2019). Includes fixed effects for zip code x time x distance-to-coast bin x Elevation Bin x owner occupied property and non-local buyer x condominium x total bedrooms. This difference is driven by **non-owner occupied homes**.

What do investors believe?

Is climate risk priced?

Where do we go from here?

Conclusion 00

- Baldauf, Garlappi, and Yannelis (2019). Demeaned home prices and demeaned flood projections, split at the median based on belief of whether climate change is happening (Yale climate change survey).

Is climate risk priced?

Does the stock market price climate risks?

Markets under react to climate induced droughts (Hong, Li, and Xu, 2019)

- A long-term trend towards drought for a country forecasts relatively poor profit growth and stock returns for companies in the food industry
- A cross-country long-short strategy earns a 4-factor alpha of 0.58% per month

Markets under react to a stock's sensitivity to temperature shocks (Kumar, Xin, and Zhang, 2019)

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{mkt,t} - r_{f,t}) + \theta_i \operatorname{TempAnomaly}_t + \epsilon_{i,t}$$
(2)

- TempAnomaly is the difference between the current temperature at time t and the average temperature over the past 30 years in the same month.
- A long-short strategy based on climate sensitivity earns a risk-adjusted 3.6% alpha per year

Is climate risk priced?

Does the stock market price climate risks?

Markets under react to climate induced droughts (Hong, Li, and Xu, 2019)

- A long-term trend towards drought for a country forecasts relatively poor profit growth and stock returns for companies in the food industry
- A cross-country long-short strategy earns a 4-factor alpha of 0.58% per month

Markets under react to a stock's sensitivity to temperature shocks (Kumar, Xin, and Zhang, 2019)

$$r_{i,t} - r_{f,t} = \alpha_i + \beta_i (r_{mkt,t} - r_{f,t}) + \theta_i \operatorname{TempAnomaly}_t + \epsilon_{i,t}$$
(2)

- TempAnomaly is the difference between the current temperature at time t and the average temperature over the past 30 years in the same month.
- A long-short strategy based on climate sensitivity earns a risk-adjusted 3.6% alpha per year

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion 00

Fund managers may overreact to climate risks

Alok, Kumar, and Wermers (2019)

- Managers within a major disaster region underweight disaster-zone stocks to a much greater degree than distant managers
- "In the two years following a climatic disaster, the underweighted portfolio by funds in proximity of the disaster zone outperforms the overweighted portion of the portfolio by about 16%"

Trends demeaned by county, year, disaster quarter and fund

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion 00

Market pricing summary

Everything is backwards!

- Markets recognize long-term climate risk but mis-estimate short-term climate risk
- Climate change is priced in municipal bond and real estate markets, but not in stock market

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

What do investors believe?

Is climate risk priced?

Where do we go from here?

Conclusion

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Proposed solutions

- Hedging
- Green bonds
- Government intervention (and firm response)
- Rating agencies

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Hedging climate risk

Andersson, Bolton, and Samama, 2016

- Simply divesting all stocks with high carbon footprint risks underperforming the benchmark for a long time
- Carbon risk is asymmetrically concentrated in a few firms
- Optimization problem: excluding worst performers in terms of carbon intensity and reweighting the remaining stocks in the green portfolio so as to minimize tracking error
- As long as carbon risk stays unpriced by the market, the two indices will generate similar returns
- Carbon free index should outperform when carbon risk becomes priced

ngolz 1112013 3112013 5112013 7112013 6112013 11112013 1112014 3112014 5112014 5112014 6112014 11112014 1112015 3112015 5112015 9112015 9112015

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Hedging climate risk

- Simply divesting all stocks with high carbon footprint risks underperforming the benchmark for a long time
- Carbon risk is asymmetrically concentrated in a few firms
- Optimization problem: excluding worst performers in terms of carbon intensity and reweighting the remaining stocks in the green portfolio so as to minimize tracking error
- As long as carbon risk stays unpriced by the market, the two indices will generate similar returns
- Carbon free index should outperform when carbon risk becomes priced

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Hedging climate risk

- Simply divesting all stocks with high carbon footprint risks underperforming the benchmark for a long time
- Carbon risk is asymmetrically concentrated in a few firms
- Optimization problem: excluding worst performers in terms of carbon intensity and reweighting the remaining stocks in the green portfolio so as to minimize tracking error
- As long as carbon risk stays unpriced by the market, the two indices will generate similar returns
- Carbon free index should outperform when carbon risk becomes priced

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Hedging climate risk

- Simply divesting all stocks with high carbon footprint risks underperforming the benchmark for a long time
- Carbon risk is asymmetrically concentrated in a few firms
- Optimization problem: excluding worst performers in terms of carbon intensity and reweighting the remaining stocks in the green portfolio so as to minimize tracking error
- As long as carbon risk stays unpriced by the market, the two indices will generate similar returns
- Carbon free index should outperform when carbon risk becomes priced

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Hedging climate risk

- Simply divesting all stocks with high carbon footprint risks underperforming the benchmark for a long time
- Carbon risk is asymmetrically concentrated in a few firms
- Optimization problem: excluding worst performers in terms of carbon intensity and reweighting the remaining stocks in the green portfolio so as to minimize tracking error
- As long as carbon risk stays unpriced by the market, the two indices will generate similar returns
- Carbon free index should outperform when carbon risk becomes priced

Is climate risk priced?

Green bonds (Baker, Bergstresser, Serafeim, and Wurgler, 2019)

- "Bonds whose proceeds are used for environmentally sensitive purposes"
- First bond issued in 2007 by the European Investment Bank
 - No universally recognized system for granting "green" status
 - External certifications exist through the Climate Bond Initiative, among others
- Baker et al study green US municipal bonds, their characteristics, and their pricing

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

What is a green bond?

- Bloomberg's definition: "all issuers must commit to deploying 100% of bond proceeds for environmental sustainability-oriented activities in order for their bond to be identified as a labeled green bond"
- Examples include renewable energy, green infrastructure, clean transportation, sustainable water management, pollution control, climate change adaptation, etc.
- Most popular uses for green munis include public power, mass transit, education, and water and sewer projects

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion 00

Green bond issuances

		Ordinary		
Year	Unique Bonds	Unique Issuers	\$ (M)	\$ (M)
		Panel A. Municipal		
2010	116	32	466	255,000
2011	97	34	137	180,000
2012	106	24	180	261,000
2013	78	15	261	224,000
2014	309	22	2,130	244,000
2015	593	38	2,940	309,000
2016	784	39	6,530	353,000
Total	2 083	204	12 644	1 826 000

- Baker et al (2019)

Is climate risk priced?

Where do we go from here?

Conclusion 00

Do green bonds sell at a discount or premium?

• A premium!

- In their multivariate regression model, Baker et al find green bonds are issued at after-tax yields around five to seven basis points lower than those of ordinary bonds.
- Bonds with a CBI certification have even lower yields
- Why? When some investors have an additional nonpecuniary preference for a security, they bid up its price
 - Consistent with this prediction, green bonds have more concentrated ownership, particularly for those with low market values and low risk
- What does this imply? The green bond premium is unlikely to last as the size of the market increases

Is climate risk priced?

Where do we go from here?

Conclusion 00

Do green bonds sell at a discount or premium?

• A premium!

- In their multivariate regression model, Baker et al find green bonds are issued at after-tax yields around five to seven basis points lower than those of ordinary bonds.
- Bonds with a CBI certification have even lower yields
- Why? When some investors have an additional nonpecuniary preference for a security, they bid up its price
 - Consistent with this prediction, green bonds have more concentrated ownership, particularly for those with low market values and low risk
- What does this imply? The green bond premium is unlikely to last as the size of the market increases

Is climate risk priced?

Where do we go from here?

Conclusion 00

Do green bonds sell at a discount or premium?

• A premium!

- In their multivariate regression model, Baker et al find green bonds are issued at after-tax yields around five to seven basis points lower than those of ordinary bonds.
- Bonds with a CBI certification have even lower yields
- Why? When some investors have an additional nonpecuniary preference for a security, they bid up its price
 - Consistent with this prediction, green bonds have more concentrated ownership, particularly for those with low market values and low risk
- What does this imply? The green bond premium is unlikely to last as the size of the market increases

Is climate risk priced?

Real effects of climate policy - California's cap and trade program

Bartram, Hou, and Kim, 2019

- Cap-and-trade rule is based on an allocation of capped allowances with specific year vintages and the market trading of those allowances
- Firms are required to pay off their plants emissions using these and additional allowances they may buy via market transactions, according to a vintage specific schedule laid out by the program.
- So what's the problem? This only affects plants in California!

What do investors believe

Is climate risk priced?

Where do we go from here?

Conclusion

Results of California's cap and trade program

- Financially constrained firms reduce emissions by 35% in CA plants relative to plants in other states, but increase emissions in their non-CA plants by 29% more than firms without CA presence
- Compared to unconstrained firms, constrained firms are less likely to invest in plants in CA, and more likely to invest in plants in other states
- Constrained firms increase their total emissions by as much as 19%

Is climate risk priced?

Where do we go from here?

Conclusion 00

Do investors account for credit ratings in the muni market?

"Higher rated sovereigns tend to be less susceptible to climate change risks... In contrast, sovereigns with a greater reliance on agriculture, lower incomes, weaker infrastructure quality, and smaller fiscal capacity exhibit greater susceptibility to the physical effects of climate change." Issuance costs are only higher for long-term bonds with poor credit ratings

	Long-Term		Short-Term			
Credit Rating:	$< \overline{AA}$	\geq AA-	< AA-	\geq AA-		
Ln(Climate Risk)	0.527** (2.041)	0.141 (0.686)	0.107 (0.878)	0.091 (0.634)		
Controls State-Year FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
Painter (2019)						

Issuance costs are only higher for long-term bonds with poor credit ratings

	Long-Term		Short-Term			
Credit Rating:	$< \overline{AA}$	\geq AA-	< AA-	\geq AA-		
Ln(Climate Risk)	0.527** (2.041)	0.141 (0.686)	0.107 (0.878)	0.091 (0.634)		
Controls State-Year FE	Yes Yes	Yes Yes	Yes Yes	Yes Yes		
Painter (2019)						

Is climate risk priced?

Issuance costs are only higher for long-term bonds with poor credit ratings

	Long-Term		<u>Short-Term</u>			
Credit Rating:	$< \overline{AA}$	\geq AA-	< AA-	\geq AA-		
Ln(Climate Risk)	0.527**	0.141	0.107	0.091		
	(2.041)	(0.686)	(0.878)	(0.634)		
Controls	Yes	Yes	Yes	Yes		
State-Year FE	Yes	Yes	Yes	Yes		
Painter (2019)						

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion • 0

What do investors believe?

Is climate risk priced?

Where do we go from here?

Conclusion

What do investors believe

Is climate risk priced?

Where do we go from here

Conclusion

Conclusion

- Institutional investors have growing concerns toward climate risk
- Markets generally react to long-term climate risk but mis-estimate short-term climate risk
 - Research also consistently finds markets are getting better at pricing climate change over time
- It is early days in finding solutions to climate change, but policies need to internalize potential externalities and factor in the market's potential to recognize climate risk
- Other references
 - RFS Climate Finance Conference program
 - Columbia University Center on Energy Policy climate report and lit review